PREPARATION OF NANO-STRUCTURAL Al2O3-TiB2 IN-SITU COMPOSITE USING MECHANICALLY ACTIVATED COMBUSTION SYNTHESIS FOLLOWED BYINTENSIVE MILLING

Authors

  • M. H. Shariat
  • S. Sharafi
Abstract:

Abstract: Nano-structural synthesized materials can be fabricated utilizing intensive milling after combustion synthesis. The Al2O3-TiB2 ceramic composite has been synthesized by aluminothermic reactions between Al, Ti (TiO2), and B (B2O3 or H3BO3). Boric acid (H3BO3) is less expensive than boron oxide, and after being dehydrated at 200°C, boron oxide will be obtained. In this study, Al, TiO2, and boric acid were used as the starting materials to fabricate an Al2O3-TiB2 ceramic composite. After mechanical activation and thermal explosion processes, intensive milling was performed for 5, 10, and 20h to assess the formation of a nano-structural composite. The X-ray phase analysis of the as-synthesized sample showed that considerable amounts of the remained reactants incorporated with the TiO phase were present in the XRD pattern. The results showed that the average crystallite size for alumina as a matrix were 150, 55 and 33 nm, after 5h, 10h, and 20h of intensive milling, respectively. The SEM microstructure of the as-milled samples indicated that increasing the milling duration after combustion synthesis causes a significant reduction in the particle size of the products, which leads to an increase in the homogeneity of particles size. A significant increase in the microhardness values of the composite powders was revealed after intensive milling process.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mechanically Activated Combustion Synthesis of B4C-TiB2 Nanocomposite Powder

Boron carbide is one of the hardest materials. The combustion method was used to synthesize B4C-TiB2 nanocomposite powder in a B2O3-Mg-TiO2-C system. An experimental study of the formation of B4C–TiB2 nanoparticles was conducted in the thermal explosion mode. A mixture of B2O3:TiO2:Mg:C at a molecular ratio of 3:1:12:1 was chosen to obtain the B4C–TiB2. This powder mixture was milled for differ...

full text

mechanically activated combustion synthesis of b4c-tib2 nanocomposite powder

boron carbide is one of the hardest materials. the combustion method was used to synthesize b4c-tib2 nanocomposite powder in a b2o3-mg-tio2-c system. an experimental study of the formation of b4c–tib2 nanoparticles was conducted in the thermal explosion mode. a mixture of b2o3:tio2:mg:c at a molecular ratio of 3:1:12:1 was chosen to obtain the b4c–tib2. this powder mixture was milled for differ...

full text

Solution Combustion Preparation Of Nano-Al2O3: Synthesis and Characterization

The aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. The paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.Aluminum oxide (Al2O3) nanoparticles were synthesiz...

full text

MICROWAVE SYNTHESIS OF B4C–Al2O3 COMPOSITE IN A MECHANICALLY ACTIVATED Al/B2O3/C POWDER MIXTURE

B4C–Al2O3 composite powder was produced by aluminothermic reduction in Al/B2O3/C system. In this research, microwave heating technique was used to synthesize desired composite. The ball milling of powder mixtures was performed in order to study the effect of mechanical activation on the synthesis process. The synthesis mechanism in this system was investigated by examining the correspondi...

full text

In situ TiC–Fe–Al2O3–TiAl/Ti3Al composite coating processing using centrifugal assisted combustion synthesis

1359-8368/$ see front matter 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.compositesb.2013.12.016 ⇑ Corresponding author at: Centre of Advanced Manufacturing and Materials Processing (AMMP), Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. Tel.: +60 (3)79675200; fax: +60 (3)79675330. E-mail addresses: [email protected] (R. ...

full text

solution combustion preparation of nano-al2o3: synthesis and characterization

the aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. the paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.aluminum oxide (al2o3) nanoparticles were synthesiz...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  1- 9

publication date 2011-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023